CONTENTS PREFACE IX INTRODUCTION 1 REFERENCES 5 CHAPTER

 CONTENTS PREFACE IX INTRODUCTION 1 REFERENCES 5 CHAPTER










Contents



Preface ix


Introduction 1

References 5


Chapter 1

Concepts, definitions, conventions, and notation 7

1.1. Classification of reactions 7

1.2. Steps, pathways, networks, and cycles 8

1.3. Rates 10

1.4. Rate equations and activation energies 11

1.5. Orders, molecularities, and ranks 12

1.6. Conversion, yield, and selectivity 12

1.7. Phase-equilibrium and transport properties 14

Summary 15

References 16


Chapter 2

Fundamentals 17

2.1. Statistical basis: molecularities and reaction orders 17

2.2. Nonideality 20

2.3. Temperature dependence 21

2.4. Compilation of rate equations of multistep reactions 23

2.5. Consistency criteria 26

2.5.1. Thermodynamic consistency 26

2.5.2. Microscopic reversibility 27

2.6. Adsorption equilibria and rates 32

Summary 34

References 35


Chapter 3

Experiments and their evaluation 39

3.1. Research reactors 39

3.1.1. Batch reactors 39

3.1.2. Continuous stirred-tank reactors 43

3.1.3. Tubular reactors 44

3.1.4. Differential reactors 45

3.1.5. Techniques for fast reactions 48

3.2. Analytical support 50

3.3. Reaction orders and apparent rate coefficients 51

3.3.1. Irreversible reactions with single reactant 52

3.3.2. Irreversible reactions with two or more reactants 56

3.3.3. Reversible reactions 58

3.3.4. Gas-phase reactions at constant pressure 59

3.4. Numerical work-up, error recognition, and reliability 60

3.5. Overview of statistical methods 65

Summary 72

References 73


Chapter 4

Tools for reduction of complexity 77

4.1. Stoichiometric constraints 77

4.2. Rate-controlling steps 78

4.2.1. Pathways of irreversible steps 79

4.2.2. Pathways with reversible steps 81

4.3. Quasi-equilibrium steps 84

4.4. Quasi-stationary states: the Bodenstein approximation 87

Summary 92

References 93


Chapter 5

Elementary combinations of reaction steps 95

5.1. Reversible reactions 95

5.1.1. First order-first order reactions 96

5.1.2. First order-second order reactions 100

5.1.3. Second order-second order and higher-order reactions 100

5.2. Parallel steps 101

5.2.1. Parallel first-order steps 101

5.2.2. Parallel second-order steps 105

5.2.3. Parallel steps of different orders 106

5.3. Coupled parallel steps 109

5.4. Sequential steps 118

5.4.1. Sequential first-order steps 118

5.4.2. Sequential steps of other orders 123

5.5. Competing steps 124

5.6. Reactions with fast pre-dissociation 125

5.7. General solution for first-order networks 127

Summary 130

References 131


Chapter 6

Practical mathematics of multistep reactions 133

6.1. Simple and non-simple pathways and networks 133

6.2. Pseudo-first order rate coefficients 134

6.3. General formula for simple pathways 135

6.4. Simple networks 145

6.4.1. Network reduction 145

6.4.2. Rate equations 147

6.4.3. Yield-ratio equations 153

6.5. Non-simple pathways and networks 155

Summary 158

References 159


Chapter 7

Network elucidation 163

7.1. Order and rank 164

7.1.1. Reaction orders 164

7.1.2. Ranks and Delplot 165

7.2. "One-plus" rate equations 171

7.2.1. Types of one-plus rate equations 172

7.2.2. Establishment of one-plus rate equations from

experimental data 173

7.3. Relationships between network properties and kinetic behavior 178

7.3.1. Simple pathways 179

7.3.2. Simple networks 190

7.3.3. Non-simple pathways and networks 194

7.4. Other criteria and guidelines 197

7.5. Auxiliary techniques 202

Summary 205

References 207


Chapter 8

Homogeneous catalysis 209

8.1. Single-species catalysis 210

8.2. Complex catalysis 214

8.2.1. Acid-base catalysis 214

8.2.2. Catalysis by metal complexes 217

8.3. Classical models of enzyme kinetics 220

8.3.1. Michaelis-Menten kinetics 221

8.3.2. Briggs-Haldane kinetics 223

8.3.3. Reversible cycles 223

8.3.4. Common features and plots 224

8.4. General formula for single catalytic cycles: Christiansen

mathematics 227

8.5. Reduction of complexity 229

8.5.1. Relative abundance of catalyst-containing species 230

8.5.2. Rate-controlling steps 232

8.5.3. Quasi-equilibrium steps 233

8.5.4. Irreversible steps 235

8.5.5. Combinations of approximations 236

8.6. Relationships between network properties and kinetic behavior 239

8.7. Cycles with external reactions 243

8.7.1. Ligand-deficient catalysts 244

8.7.2. Inhibition, activation, decay, and poisoning 249



8.8. Multiple cycles 253

8.8.1. Competing reactions (cycles with common member) 253

8.8.2. Dual- and multiple-form catalysts (connected cycles) 256

8.8.3. Reactions with multiple products (cycles with common

pathway segments) 259

8.9. Self-accelerating reactions (autocatalysis) 265

8.9.1. Product-promoted reactions 265

8.9.2. Reactant-inhibited reactions 267

Summary 267

References 269



Chapter 9

Heterogeneous catalysis 273

9.1. Adsorption and reaction: Langmuir-Hinshelwood kinetics 274

9.2. Rate-controlling steps: the Hougen-Watson formula 275

9.3. Relative abundance of catalyst-surface species 280

9.3.1. Simplification of rate equations 280

9.3.2. Self-acceleration 283

9.4. Model discrimination 284

9.4.1. Criteria for coefficients 284

9.4.2. Concentration dependence of initial rates 286

 9.4.3. Testing of predictions 288

9.5. Mass and heat transfer 290

9.5.1. Mass transfer to and from catalyst particle 291

9.5.2. Mass transfer within catalyst particle: Thiele-

Damköhler theory 291

9.5.3. Nonisothermal catalyst particle 293

9.5.4. Forced convection within catalyst particle 293

9.6. "Heterogenized" catalysis 295

9.7. Shape selectivity 297

9.8. Catalyst deactivation 299

Summary 303

References 305



Chapter 10

Chain reactions 309

10.1. General properties 309

10.2. Initiation 310

10.3. Reactions with two chain carriers: the hydrogen-bromide reaction 311

10.4. Identification of relevant steps 316

10.5. Transmission of reactivity: indirect initiation, chain transfer 322

10.6. Reactions with more than two radicals 324

10.6.1. Rice-Herzfeld mechanisms: thermal cracking 325

10.6.2. Hydrocarbon oxidation 331



10.7. Reactions with chain branching: the hydrogen-oxygen reaction 334

10.8. Inhibition and induction periods 338

Summary 340

References 341



Chapter 11

Polymerization 347

11.1. Types of polymerization reactions 347

11.2. Step-growth polymerization 350

11.2.1. Functionality 350

11.2.2. Mechanism and rate 351

11.2.3. Degree of polymerization and molecular weight 355

11.3. Radical polymerization 359

11.3.1. Mechanism and rate 359

11.3.2. Photochemical initiation 366

11.3.3. Chain length 366

11.3.4. Degree of polymerization and molecular weight 368

11.4. Ionic polymerization 372

11.4.1. Anionic polymerization 373

11.4.2. Cationic polymerization 380

11.5. Coordination polymerization 382

11.5.1. Mechanism 383

11.5.2. Molecular-weight distribution and degree of polymerization 385

11.5.3. Polymerization rate 387

11.6. Chain-growth copolymerization 388

11.6.1. Polymer composition: reactivity ratios and copolymer

equation 388

11.6.2. Polymerization rate 392

Summary 395

References 397


Chapter 12

Mathematical modeling 403

12.1. Strategies of process development 403

12.2. Effective fundamental modeling 407

12.2.1. Complete fundamental modeling with Bodenstein

approximation 407

12.2.2. Streamlining for large networks 413

12.2.3. Determination of coefficients 416

12.3. "Shortsightedness" of elementary reaction steps 417

12.4. Lumping and continuous mixtures 420

12.5. Model validation 423

Summary 425

References 426


Chapter 13

Unusual thermal and mass-transfer effects 429

13.1. Anomalous temperature dependence 429

13.1.1. Negative apparent activation energy: lower rate at

higher temperature 430

13.1.2. Change in rate control with change in temperature 433

13.1.3. Rate maxima and minima 435

13.1.4. Activation energies of phenomenological coefficients 436

13.2. Uncommon heat-transfer problems 437

13.3. Uncommon mass-transfer problems 438

13.3.1. Mass transfer and reaction rate 438

13.3.2. Mass transfer and selectivity 441

Summary 441

References 442


Chapter 14

Instability, periodic reactions, and chaos 445

14.1. Instability 445

14.2. Runaway and multiple steady states 446

14.3. Periodic reactions 450

14.4. Complex oscillations and chaos 455

Summary 457

References 457


Appendix: Software and data bases 461

I: Software for numerical simulation 461

II: Software for statistics 462

III: Data bases 462


Glossary of symbols 463


Author Index 467


Subject Index 477





Tags: chapter 1, 207 chapter, chapter, introduction, contents, references, preface